CPM Algebra 2 Textbook to Curriculum Map Alignment for CC Algebra 2 Algebra 2 – UNIT 1

Model and Reason with Equations and Expressions

Critical Area: Students use reasoning to analyze equations/ inequalities and develop strategies for solving them. Through reasoning students develop fluency writing, interpreting, analyzing and translating between various forms of linear equations and inequalities. By exploring a question about the world around them (mathematical modeling) and attempting to answer the question students expand the scope of algebraic operations to solve a wide variety of linear and quadratic real world problems. Students explain why the x-coordinates of the points where the graphs y = f(x) and y = g(x) intersects and explore cases involving polynomial, rational, absolute value, exponential, and logarithmic functions.

CLUSTER	COMMON CORE STATE STANDARDS	CPM MATH	OTHER RESOURCES
(m)Create equations that describe numbers or relationships.	A-CED.3. Represent constraints by equations or inequalities, and by systems of equations or inequalities, and interpret solutions as viable or non-viable options in a modeling context. A-CED.4. Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. ★	MN: 4.2.2, 4.2.4 Checkpoint 9A 1-87, 1-107, 2-10, 2-120, 2-61, 2-87, 3-65, 3-123, 3-131, 4-8, 4- 24, 4-41, 4-43, 4-94, 4-95, 4-101, 4-106, 4-110, 5-32, 7-60, 7-124, 8-15, 10-163, 11-58 2.1.1-2.1.5, 2.2.1, 2.2.2, 4.1.4, 6.1.1-6.1.5 MN: 4.2.4, 6.1.2, 6.1.4 2-4, 2-20, 2-87, 4-30, 4-57, 4- 100, 4-107, 5-88, 6-21, 6-35, 6-64, 6-148, 6-81, 7-20, 7-44, 7-150, 9-15, 10-68, 10-96, 10-189, 10- 190, 11-8 4.2.1-4.2.4 MN: 4.2.3, 4.2.4 Checkpoint 2B, Checkpoint 8A	Illustrative Mathematics Buying a Car: A-CED.1 Basketball: A-CED.1 & A-REI.2 How Much Folate: A-CED.2 Dimes and Quarters: A-CED.2 & A-CED.3 Growing Coffee: A-CED.3 Bernado and Sylvia Play a Game: A-CED.3 Clea on an Escalator: A-CED.2 Equations and Formulas: A-CED.4 Mars Task: Optimization Problems: Boomerangs

CPM Algebra 2 T	'extbook to C	urriculum l	Map Aligi	nment for (CC Algebra 2

4-30, 4-40, 4-51, 4-65, 4-72, 4-
74,
4-96, 4-99, 4-104, 4-107(b), 4-
109,
7-151
5.1.3
Checkpoint 4B
1-37, 1-91, 2-113, 3-41, 4-32, 4-
67,
4-87, 6-25, 11-80

	er 111115esta 2 Tentsoon	<u> </u>	3
(m)Understand	Algebra – Reasoning with Equations and	4.1.1, 4.1.2	Radical Equations: A-REI.2
solving equations	Inequalities	Checkpoint 8B, Checkpoint 11	Mars Task:
as a process of	A-REI.2. Solve simple rational and radical	3-96, 3-121, 4-27, 4-68, 4-95, 6-	Building and Solving Equations 2
reasoning and	equations in one variable, and give examples	40,	Solving Linear Equations in Two Variables
explain the	showing how extraneous solutions may arise.	6-53, 7-68, 7-122, 9-58, 9-80,	Sorting Equations and Identities
reasoning.		9-108, 10-100, 11-46, 11-81	Building and Solving Complex Equations
(m)Solve equations	A-REI.3.1. Solve one-variable equations and	n/a	Mars Task:
and inequalities in	inequalities involving absolute value,		Representing Inequalities Graphically
one variable.	graphing the solutions and interpreting them		
	in context. CA		
(m)Represent and	A-REI.11. Explain why the <i>x</i> -coordinates of	4.1.2, 4.1.3, 4.2.4	Illustrative Mathematics
solve equations	the points where the graphs of the equations y	4-7, 4-22, 4-23, 4-29, 4-30, 4-	Growth Rate: Given growth charts for the heights of girls and
and inequalities	= f(x) and $y = g(x)$ intersect are the solutions	99,	boys, students will use slope to approximate rates of change
graphically.	of the equation $f(x) = g(x)$; find the solutions	7-42, 7-43, 8-160, 10-54	in the height of boys and girls at different ages. Students will
	approximately, e.g., using technology to		use these approximations to plot graphs of the rate of change
	graph the functions, make tables of values, or		of height vs. age for boys and girls.
	find successive approximations. Include cases		Introduction to Polynomials - College Fund: A-REI.11
	where $f(x)$ and/or $g(x)$ are linear, polynomial,		
	rational, absolute value, exponential, and		
	logarithmic functions. ★		

CPM Algebra 2 Textbook to Curriculum Map Alignment for CC Algebra 2 Algebra 2 – UNIT 2

Structure in Expressions and Arithmetic with Polynomials

Critical Area: Students connect the polynomial operations with the background knowledge of the algorithms found in multi-digit integer operations. Students realize that the operations on rational expressions (the arithmetic of rational expressions) are governed by the same rules as the arithmetic of rational numbers. Students analyze the structure in expressions and write them in equivalent forms. By modeling students expand the scope of algebraic operations to solve a wide variety of polynomial equations and real world problems. Students identify zeros of polynomials, including complex zeros of quadratic polynomials, and make connections between zeros of polynomials and solutions of polynomial equations. The role of factoring, as both an aid to the algebra and to the graphing of polynomials, is explored.

Algebra - Seeing Structure in Expressions A-SSE.1. Interpret expressions that represent a quantity in terms of its context. * a. Interpret parts of an expression, such as terms, factors, and coefficients. * b. Interpret complicated expressions by viewing one or more of their parts as a single entity. For example, interpret P(1 + r) ⁿ as the product of P and a factor not depending on P. * (m)Write expressions in equivalent forms to solve problems. A-SSE.4. Derive the formula for the sum of a finite geometric series (when the common ratio is not 1), and use the formula to solve problems. For example, calculate mortgage payments. * A-SSE.4. Derive the formula for the sum of a finite geometric series (when the common ratio is not 1), and use the formula to solve problems. For example, calculate mortgage payments. * A-SSE.2. A-SSE.4. Derive the formula for the sum of a finite geometric series (when the common ratio is not 1), and use the formula to solve problems. For example, calculate mortgage payments. A-SSE.4. A-SSE.4. Derive the formula for the sum of a finite geometric series (when the common ratio is not 1), and use the formula to solve problems. For example, calculate mortgage payments. A-SSE.4. A-SSE.4. Derive the formula for the sum of a finite geometric series (when the common ratio is not 1), and use the formula to solve problems. For example, calculate mortgage payments. A-SSE.4. A-SSE.4. Derive the formula for the sum of a finite geometric series (when the common ratio is not 1), and use the formula to solve problems. A-SSE.4. A-SSE.4. Derive the formula for the sum of a finite geometric series (when the common ratio is not 1), and use the formula to solve problems. A-SSE.4. A-SSE.4. Derive the formula for the sum of a finite geometric series (when the common ratio is not 1), and use the formula to solve problems. A-SSE.4. Derive the formula for the sum of a finite geometric series (when the common ratio is not 1), and A-SSE.4. Deri	CLUSTER	COMMON CORE STATE STANDARDS	CPM MATH	OTHER RESOURCES
3-6, 3-23, 3-67, 3-98, 3-130, 5- 134, 6-25, 8-143 10.1.1–10.1.4, 10.2.1, 10.2.2 MN: 10.1.2, 10.1.4, 10.2.2	(m)Interpret the structure of expressions. (m)Write expressions in equivalent forms	Algebra – Seeing Structure in Expressions A-SSE.1. Interpret expressions that represent a quantity in terms of its context. ★ a. Interpret parts of an expression, such as terms, factors, and coefficients. ★ b. Interpret complicated expressions by viewing one or more of their parts as a single entity. For example, interpret P(1 + r) ⁿ as the product of P and a factor not depending on P. ★ A-SSE.2. Use the structure of an expression to identify ways to rewrite it. A-SSE.4. Derive the formula for the sum of a finite geometric series (when the common ratio is not 1), and use the formula to solve problems. For example, calculate	2.2.2, 3.1.3 MN: 3.1.3, 8.1.1 2-109, 2-126, 2-148, 3-133, 6-27, 7-137, 7-141, 8-183, 10-57, 10-84 2.1.2– 2.1.5, 2.2.1, 2.2.2, 3.1.3, 4.1.1, 10.2.2 MN: 3.2.4, 10.3.2 Checkpoint 3A 2-23, 2-24, 2-40, 2-93, 3-32, 3-53, 3-67, 3-98, 3-105, 3-130, 5-39, 5- 112, 5-128, 6-26, 6-87, 6-114, 7- 27, 9-69, 12-104 3.1.1–3.1.3, 4.1.1, 8.3.2, 10.3.2 MN: 8.3.3 3-6, 3-23, 3-67, 3-98, 3-130, 5- 134, 6-25, 8-143 10.1.1–10.1.4, 10.2.1, 10.2.2	Mathematics Assessment Project Generating Polynomials from Patterns Comparing Investments Solving Linear Equations in Two Variables Interpreting Algebraic Expressions Illustrative Mathematics • Animal Populations: A-SSE.1, 2 • Sum of Even and Odd: A-SSE.2 • Seeing Dots: A-SSE.1, 2 • Zeroes and factorization of a non- polynomial function: A-SSE.2 • Trina's Triangles: A-SSE.4

(m)Perform	Algebra – Arithmetic with Polynomials and Rational	3.1.1–3.1.3, 3.2.1	Illuminations NCTM
arithmetic	Expressions	Checkpoint 5A	Polynomial Puzzler Overhead
operations on	A-APR.1. Understand that polynomials form a system	3-23, 3-29, 5-37, 5-49, 6-87, 8-87,	
polynomials.	analogous to the integers, namely, they are closed under	9-14, 10-175.	
	the operations of addition, subtraction, and multiplication;	Operations with polynomials are	
	add, subtract, and multiply polynomials.	also practiced extensively in	
		implementing standards A-APR.6	
		and A-APR.7.	
Understand the	A-APR.2. Know and apply the Remainder Theorem: For	8.3.1-8.3.3	Zeroes and factorization of a quadratic
relationship	a polynomial $p(x)$ and a number a , the remainder on	MN: 8.3.2	polynomial I: A-APR.2
between zeros and	division by $x - a$ is $p(a)$, so $p(a) = 0$ if and only if $(x - a)$	8-148, 8-154, 8-175, 9-9	Zeroes and factorization of a quadratic
factors of	is a factor of $p(x)$.	, ,	polynomial II: A-APR.2
polynomials.		8.1.1-8.1.3, 8.3.2, 8.3.3	porjamental tal tal tal
	A-APR.3. Identify zeros of polynomials when suitable	MN: 8.3.2	
	factorizations are available, and use the zeros to construct	8-37, 8-106, 8-107, 8-143, 8-171,	
	a rough graph of the function defined by the polynomial.	8-179, 8-183, 8-186, 9-93, 10-38,	
		10-57	
Use polynomial	A-APR.4. Prove polynomial identities and use them to	3.1.1–3.1.3, 10.3.1	
identities to solve	describe numerical relationships. For example, the	2-24, 2-147	
problems.	polynomial identity $(x^2 + y^2)^2 = (x^2 - y^2)^2 + (2xy)^2$ can be		
	used to generate Pythagorean triples.		
		10.3.1	
	A-APR.5. Know and apply the Binomial Theorem for the	MN: 10.3.1	
	expansion of $(x + y)^n$ in powers of x and y for a positive	10-145, 10-146, 10-155,	
	integer n , where x and y are any numbers, with	10-171, 10-175, 10-187	
	coefficients determined for example by Pascal's Triangle.(+)		
Rewrite rational	A-APR.6. Rewrite simple rational expressions in different	8.3.1, 8.3.2	
expressions.	forms; write $a(x)/b(x)$ in the form $q(x) + r(x)/b(x)$, where	MN: 3.2.4,	
capi essiulis.	a(x), $b(x)$, $q(x)$, and $r(x)$ are polynomials with the degree	Checkpoint 3A	
	of $r(x)$ less than the degree of $b(x)$, using inspection, long	3-78, 3-91, 3-105, 3-130, 8-120,	
	division, or, for the more complicated examples, a	8-124, 8-185, 9-54, 12-93, 12-110	
	computer algebra system.	0-124, 0-103, 3-34, 12-33, 12-110	
	(+) A-APR.7. Understand that rational expressions form a	3.2.2–3.2.5	
	system analogous to the rational numbers, closed under	MN: 3.2.2, 3.2.5	
	addition, subtraction, multiplication, and division by a	•	
		Checkpoints 6A and 6B	

CPM Algebra 2 Text	book to Curriculun	n Map Alignment	for CC Algebra 2

nonzero rational expression; a	ndd, subtract, multiply, and	3-90, 3-103, 3-130, 4-13, 5-31,	
divide rational expressions.		5-92, 6-13, 6-39, 6-73, 6-83, 6-	
		114,	
		6-121, 6-145	

CPM Algebra 2 Textbook to Curriculum Map Alignment for CC Algebra 2 Algebra 2 – UNIT 3 FUNCTIONS

Critical Area: Instructional time should focus on relating arithmetic of rational expressions to arithmetic of rational numbers. Students identify zeros of polynomials, including complex zeros of quadratic polynomials, and make connections between zeros of polynomials and solutions of polynomial equations. Students will expand understandings of functions and graphing to include trigonometric functions. Building on their previous work with functions and on their work with trigonometric ratios and circles in the Geometry course, students now use the coordinate plane to extend trigonometry to model periodic phenomena. Students synthesize and generalize what they have learned about a variety of function families. They extend their work with exponential functions to include solving exponential equations with logarithms. They explore the effects of transformations on graphs of diverse functions, including functions arising in an application, in order to abstract the general principle that transformations on a graph always have the same effect regardless of the type of the underlying function.

CLUSTER	COMMON CORE STATE STANDARDS	CPM MATH	OTHER RESOURCES
(m) Interpreting functions that arise in applications in terms of the context (m) Analyze Functions Using Different Representations	F-IF.4. For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. ★ F-IF.5 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. ★ F-IF.6 Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. ★ F-IF.7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. ★ b. Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions. ★	1.1.2, 1.2.1, 1.2.2, 1.2.4, 2.1.3, 2.2.1, 5.2.3, 5.2.5, 8.1.1, 8.1.3 MN: 1.2.2 2-4, 2-109, 2-118, 2-131, 2-148, 3-30, 3-34, 3-133, 5-79, 5-104, 5-129, 6-132, 7-19, 7-112, 7-137, 7-141, 8-25, 8-95, 9-69 1.1.3, 1.2.1, 1.2.2, 4.2.2, 4.2.3, 5.1.2, 5.2.5, 8.3.3 MN: 1.1.3 Checkpoint 3B 1-23, 1-34, 1-68, 1-109, 2-69, 2-81, 2-141, 3-118, 4-45, 5-62, 5-80, 7-4, 7-19, 7-24, 7-70, 7-134, 8-95, 10-130, 10-163 1-112, 3-36, 3-55, 6-28 1.1.3, 2.2.1, 2.2.2, 2.2.5 1-86, 2-52, 2-126, 2-131, 2-141,	Illustrative Mathematics Running Time: F-IF.7c Graphs of Power Functions: F-IF.7c Exponentials and Logarithms II Mathematics Assessment Program Interpreting Functions 1 Sorting Functions Skeleton Tower Best Buy Tickets Mathematics Vision Project Polynomial Functions

- c. Graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior. ★
- e. Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude. ★

F-IF.8 Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.

F-IF.9 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions).

2-171, 3-34, 3-56, 3-133, 3-134, 5-127, 6-78, 7-29, 7-58, 7-85, 7-137

8.1.1–8.1.3, 8.3.2, 8.3.3 MN: 8.3.2 8-106, 8-107, 8-125, 8-138, 8-171, 8-183, 8-186, 9-9, 9-68, 9-93, 9-116, 10-38, 10-57, 10-151, 10-174

2.2.1, 2.2.2, 5.2.3, 5.2.4, 6.2.4, 7.1.2–7.1.4, 7.1.7, 7.2.1–7.2.4, 12.1.4
MN: 2.1.1
2-52, 5-89, 5-118, 6-27, 6-86, 6-116, 6-155, 7-141, 8-43, 8-146, 9-69, 10-92, 11-9

2.1.2–2.1.5 MN: 2.1.3, 2.1.4 Checkpoints 5B, 7A, and 7B 2-22, 2-36, 2-37, 2-50, 2-128, 2-166, 2-177, 3-31, 5-66, 5-76, 5-100, 5-134, 6-85, 7-9, 8-95, 9-25

10.3.2 MN: 2.1.1 Checkpoint 9A 2-29, 2-63, 2-85, 3-26(b), 3-49, 3-131, 6-15, 6-138, 7-20, 7-95, 8-23, 8-74, 9-38, 9-41, 10-96, 10-169, 11-101, 12-71. For implementation of properties of exponents in general, see standard A-SSE.1b.

CPM Algebra 2 Textbook to Curriculum Map Alignment for CC Algebra 2	CPM Algebra 2	Textbook to	Curriculum Ma	p Alignment for	· CC Algebra 2
---	---------------	-------------	---------------	-----------------	----------------

	CI WI Algebra 2 Textbook to Curricult	 	
		1.1.4, 1.2.3, 2.1.2–2.1.4, 2.2.1–2.2.5, 5.2.4, 7.2.1–7.2.4 MN: 2.1.3 1-39, 1-127, 2-5, 3-34, 3-56, 3-84, 3-134, 4-99, 7-65, 7-142, 8-94	
(m) Build a function that models a relationship between two quantities	Functions – Building Functions F-BF.1 Write a function that describes a relationship between two quantities. * b. Combine standard function types using arithmetic operations. For example, build a function that models the temperature of a cooling body by adding a constant function to a decaying exponential, and relate these functions to the model.*	5.2.5, 6.2.3, 6.2.4 MN: 5.1.3 1-35, 1-71, 5-48, 5-112, 5-113, 5-116, 6-87, 6-141, 7-150	Inside Mathematics Measuring Mammals- F-BF.4 Illustrative Mathematics Exponentials and Logarithms I: F-BF.4
(s) Build new functions from existing functions	F-BF.3 Identify the effect on the graph of replacing $f(x)$ by $f(x) + k$, $kf(x)$, $f(kx)$, and $f(x + k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. <i>Include recognizing even</i> and odd functions from their graphs and algebraic expressions for them. F-BF.4 Find inverse functions. a. Solve an equation of the form $f(x) = c$ for a simple function f that has an inverse and write an expression for the inverse. For example, $f(x) = 2x^3$ or $f(x) = (x + 1)/(x - 1)$ for $x \ne 1$	2.1.2–2.1.4, 2.2.1, 2.2.4, 2.2.5, 5.2.4, 7.2.1–7.2.4 MN: 2.2.2, 2.2.3, 2.2.5 2-70, 2-74, 2-107, 2-109, 2-118, 2-125, 2-143, 2-148, 2-163, 2-164, 2-165, 2-174, 3-30, 3-54, 3-83, 3-133, 3-134, 6-27, 6-42, 6-86, 6-154, 7-129, 7-137, 7-141, 7-150, 7-158, 10-190 5.1.1–5.1.3, 5.2.1, 5.2.2 Checkpoint 9B 5-8, 5-26, 5-51, 5-62, 5-127, 5-129, 6-136, 7-85, 7-97, 8-77, 8-142, 9-92	Mars Task: Table Tiles Representing Polynomials Graphically Mathematics Vision Project: Functions and Their Inverses Logarithmic Functions
(s) Construct and	Functions – Linear, Quadratic, and Exponential		Illustrative Mathematics

	CPM Algebra 2 Textbook to Curriculu		
compare linear, quadratic, and exponential models and solve problems	Models F-LE.4 For exponential models, express as a logarithm the solution to $ab^{ct} = d$ where $a, c,$ and d are numbers and the base b is 2, 10, or e ; evaluate the logarithm using technology. ★[Logarithms as solutions for exponentials.] 4.1 Prove simple laws of logarithms. CA ★ 4.2 Use the definition of logarithms to translate between logarithms in any base. CA ★	5.2.1, 5.2.2, 6.2.1–6.2.4, 10.3.2 MN: 6.2.2 Checkpoint 10 5-74, 5-85, 5-97, 5-103, 6-11, 6-113, 6-151, 7-80, 7-149, 7-174, 10-56, 10-103, 11-10, 11-45, 11-59	Bacteria Populations: F-LE.4 Illuminations: Logarithms Demystified Mars Task Representing Polynomials Graphically Having Kittens Representing Functions of Everyday Situations
(s) Perform arithmetic operations with complex numbers	Number and Quantity – Complex Number System N-CN.1.Know there is a complex number i such that $i^2 = -1$, and every complex number has the form $a + bi$ with a and b real. N-CN.2. Use the relation $i^2 = -1$ and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers.	8.2.1–8.2.3 8-70, 8-72, 8-76, 8-90, 8-140, 8-156, 10-53, 10-131 8.2.2, 8.2.3 8-71, 8-72, 8-90, 8-111, 8-184, 9-57, 10-104, 11-69	Illustrative Mathematics Complex number patterns: N-CN.1 Powers of a complex number: N-CN.2 Completing the square: N-CN.7; A-REI.4 Mars Task Evaluating Statements about Radicals
(s) Use complex numbers in polynomial identities and equations. [Polynomials with real coefficients.]	N-CN.7 Solve quadratic equations with real coefficients that have complex solutions. N-CN.8 (+) Extend polynomial identities to the complex numbers. For example, rewrite $x^2 + 4$ as $(x + 2i)(x - 2i)$. N-CN.9 (+) Know the Fundamental Theorem of Algebra; show that it is true for quadratic polynomials.	8.2.1–8.2.3 8-88, 8-110, 8-143, 8-154, 8-171, 8-181, 8-186, 8-190, 9-55, 10-101(b), 10-124 8.2.2, 8-171, 8.3.2 MN: 8.3.2 8-87, 8-187, 9-14 8.1.1, 8.1.2, 8.2.1–8.2.3, 8.3.1–8.3.3 MN: 8.3.2 8-104, 8-105, 8-106, 8-125, 8-143, 8-170, 8-180, 8-182, 8-186	

CPM Algebra 2 Textbook to Curriculum Map Alignment for CC Algebra 2 Algebra 2 – UNIT 4 Geometry and Trigonometry

Critical Area: Students use algebraic manipulation, including completing the square, as a tool for geometric understanding to determine if the equation represents a circle or a parabola. They graph shapes and relate the graphs to the behavior of the functions with the transformation on the variable (e.g. the graph of y=f(x+2)). Students expand on their understanding of the trigonometric functions first developed in Geometry to explore the graphs of trigonometric functions with attention to the connection between the unit circle representation of the trigonometric functions and their properties, use trigonometric functions to model periodic phenomena. Students use Pythagorean identity to find the trig function outputs given the angle and understand that interpretation of sine and cosine yield the Pythagorean Identity.

CLUSTER	COMMON CORE STATE STANDARDS	CPM MATH	OTHER RESOURCES
Translate	Geometry – Expressing Geometry	n/a	Illustrative Mathematics Resources:
between the	Properties with Equations		Explaining the equation for a circle: G-GPE.3
geometric	G-GPE.3.1. Given a quadratic equation of		Miscellaneous Sources
description and	the form $ax^2 + by^2 + cx + dy + e = 0$, use the		Gravel Roads and Sinusoidal Patterns:
the equation	method for completing the square to put the		
for a conic	equation into standard form; identify		Mathematics Vision Project:
section	whether the graph of the equation is a circle,		<u>Circles and other Conics</u>
	ellipse, parabola, or hyperbola, and graph		
	the equation. [In Algebra II, this standard		
	addresses circles and parabolas only.] CA		
Extend the	Functions – Trigonometric Functions	7.1.5	Illustrative Mathematics Resources
domain of the	F-TF.1. Understand radian measure of an	MN: 7.1.5	Trig Functions and the Unit Circle: F-TF.2
trigonometric	angle as the length of the arc on the unit	7-92, 7-104, 7-161, 9-44	NCTM Illuminations
functions using	circle subtended by the angle.		Graphs from the Unit Circle: F-TF.1, 2
the unit circle	F-TF.2. Explain how the unit circle in the	7.1.6	As the Wheel Turns
	coordinate plane enables the extension of	MN: 7.1.6, 7.1.7	
	trigonometric functions to all real numbers,	7-37, 7-54, 7-63, 7-64, 7-92, 7-104,	
	interpreted as radian measures of angles	7-162, 7-169, 9-44, 10-69	Mathematics Vision Project
	traversed counterclockwise around the unit		<u>Trigonometric Functions</u>
	circle.		Modeling with Functions
	F-TF.2.1. Graph all 6 basic trigonometric		
	functions.		
Model periodic	F-TF.5. Choose trigonometric functions to	7.1.1, 7.1.2, 7.2.1–7.2.4	Illustrative Mathematics Resources
phenomena	model periodic phenomena with specified	MN: 7.2.4	Foxes and Rabbits Intro
with	amplitude, frequency, and midline. ★	7-65, 7-117, 7-119, 7-129, 7-130,	• Foxes and Rabbits 2
trigonometric		7-158, 8-25, 8-189, 12-98	• Foxes and Rabbits 3: F-TF.5
functions			- 10/100 und 1400100 5.1 11.5

			Dan Meyer
			Scrambler
			Mars Task
			Representing Trigonometric Functions
Prove and	F-TF.8. Prove the Pythagorean identity	7.1.4, 12.2.1	
apply	$\sin^2(\theta) + \cos^2(\theta) = 1$ and use it to find $\sin(\theta)$,	MN: 7.1.7	
trigonometric	$cos(\theta)$, or $tan(\theta)$ given $sin(\theta)$, $cos(\theta)$, or	7-53, 7-64, 7-96, 7-110, 9-79,	
identities	$tan(\theta)$ and the quadrant.	12-100, 12-114	
		Standards F-TF.9+ (and F-TF.6+)	
		are introduced in Lessons 12.1.1–	
		12.1.3 and 12.2.2–12.2.3.	

CPM Algebra 2 Textbook to Curriculum Map Alignment for CC Algebra 2 Algebra 2 – UNIT 5 Statistics and Probability

Critical Area:

Students analyze data to make sound statistical decisions based on probability models. By investigating examples of simulations of experiments and observing outcomes of the data, students gain an understanding of what it means for a model to fit a particular data set. Students develop a statistical question in the form of a hypothesis (supposition) about a population parameter, choose a probability model for collecting data relevant to that parameter, collect data, and compare the results seen in the data with what is expected under the hypothesis. Students build on their understanding of data distributions to help see how the normal distribution uses area to make estimates of frequencies (which can be expressed as probabilities). In addition, they can learn through examples the empirical rule, that for a normally distributed data set, 68% of the data lies within one standard deviation of the mean, and that 95% are within two standard deviations of the mean.

CLUSTER	COMMON CORE STATE STANDARDS	CPM MATH	OTHER RESOURCES
(s)Summarize, represent, and interpret data on a single count or measurement data.	Statistics and Probability – Interpreting Categorical and Quantitative Data S.ID.4. Use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate population percentages. Recognize that there are data sets for which such a procedure is not appropriate. Use calculators, spreadsheets, and tables to estimate areas under the normal curve	9.3.1–9.3.3 MN: 9.3.1, 9.3.3 9-88, 9-104, 9-105, 10-12, 10-41, 10-67, 11-6, 11-20	Illustrative Mathematics: SAT Score: S.ID.4 Do You Fit In This Car?: S.ID.4 Should We Send Out a Certificate?: S.ID.4 Mars Task Representing Data with Frequency Graphs Representing Data with Box Plots
Understand and evaluate random processes underlying statistical experiments.	Inferences and Justifying Conclusions S.IC.1. Understand statistics as a process for making inferences to be made about population parameters based on a random sample from that population. S.IC.2. Decide if a specified model is consistent with results from a given data-generating process, e.g., using simulation. For example, a model says a spinning coin falls heads up with probability 0.5. Would a result of 5 tails in a row cause you to question the model?	9.1.2, 9.1.3, 11.2.1 MN: 9.1.1 9-7, 9-23, 9-36, 9-52, 9-62, 9-104, 9-115, 11-21, 11-43, 11-66, 11-98, 11-105 9.3.2, 11.1.1, 11.1.2 11-18, 11-19, 11-29	Illustrative Mathematics: School Advisory Panel: S-IC.1 Musical Preferences: S-IC.1, S-ID.5 Mathematics Vision Project Statistics Georgia Standards Advanced Algebra Unit 1: Inferences and Conclusions from Data

M-1 : 6		0.4.2.0.2.4.0.2.2	9
Make inferences	S.IC.3. Recognize the purposes of and	9.1.2, 9.2.1, 9.2.2	Illustrative Mathematics:
and justify	differences among sample surveys, experiments,	MN: 9.2.1	Strict Parents: S-IC.1, 3
conclusions from	and observational studies; explain how	9-36, 9-51, 9-62, 9-63, 9-76, 9-	Musical Preferences: S-IC.1, S-ID.5
sample surveys	randomization relates to each.	89,	
experiments, and	S.IC.4. Use data from a sample survey to	9-90, 9-113, 11-30	
observational	estimate a population mean or proportion;	, ,	Mars Task
studies.	develop a margin of error through the use of simulation models for random sampling.	9.1.3, 9.3.2, 11.1.3, 11.2.1	Interpreting Data: Muddying the Waters Devising a Measure: Correlation
	S.IC.5. Use data from a randomized experiment	MN: 11.2.2, 11.2.3	Devising a Weasare. Correlation
	to compare two treatments; use simulations to	11-42, 11-64, 11-66, 11-75, 11-	
	decide if differences between parameters are	77,	
	significant.	11-98, 11-100	
	S.IC.6. Evaluate reports based on data.		
	5.10.0. Evaluate reports based on data.	11.2.1–11.2.3	
		MN: 11.2.3	
		9-24, 9-89, 11-65, 11-76	
		3 1 1, 3 33, 11 33, 11 7 3	
		9.1.1, 9.2.1, 9.2.2, 11.3.1	
		9-7, 9-22, 9-23, 9-24(d), 9-38, 9-	
		50,	
		<u> </u>	
		9-64, 9-75, 9-112, 11-54, 11-98,	
T7 1 1 1 1 1 1 1 1		11-105	
Use probability to	Statistics and Probability – Using Probability		
evaluate outcomes	to Make Decisions	11.2.4, 11.3.1	
of decisions.	S.MD.6. (+) Use probabilities to make fair	11-18, 11-20, 11-55, 11-87, 11-	
	decisions (e.g., drawing by lots, using a random	96,	
	number generator).	portfolio entry in Chapter 11.	
	S.MD.7. (+) Analyze decisions and strategies		Inside Mathematics:
	using probability concepts (e.g., product testing,	11.2.4, 11.3.1	Fair Games
	medical testing, pulling a hockey goalie at the	11-7, 11-28, 11-29, 11-66, 11-67,	
	end of a game).	11-77, 11-78, 11-87, 11-88, 11-	
		96,	
		11-98, 12-35, 12-51, portfolio	
		entry	
		,	
		in Chapter 11.	